sanofi

Review and Q\&A Checkpoints:
 Checkpoint 1

- Overview of Hemophilia
A and B Module
- Management of Hemophilia A and B Module

Facilitator Guide

Introduction

This Facilitator Guide is designed to help you follow a process that will ensure representatives under your leadership are well-prepared with the foundational knowledge that is critical to their careers at Sanofi.

Why Checkpoints?

As a facilitator, you have an opportunity to share your hard-earned experience in a meaningful way: through guidance and coaching. Through these series of Checkpoints, you will give learners opportunities to:

- Ask questions
- Review key content
- Verbalize complex concepts
- Prepare for success in the field

66 Leadership is about making others better as a result of your presence and making sure that impact lasts in your absence. 99 Sheryl Sandberg

A great coach:

- Listens more than speaks
- Asks great questions
- Clarifies when needed
- Avoids "telling"
- Doesn't judge
- Helps others commit to specific actions

How to Use This Guide

This workshop is developed in PowerPoint (PPT) to function as both a Facilitator Guide and presentation slides. Prior to the workshop, review this page to familiarize yourself with how to navigate the PPT seamlessly during the session.

View	Primary Audience	Primary Audience Sees
Slideshow	Participants	- Full-screen slides - Share this view with participants on the big screen (in person) or on screenshare (virtual)
Facilitation Notes	Facilitator(s)	- Slide thumbnail - Facilitator directions for that slide
Presenter View (with multiple screens)	Facilitator(s)	On presenting screen: - Full-screen slides for participants to view On $2^{\text {nd }}$ screen:

On $2^{\text {nd }}$ screen:

- On left:
- Current slide
- On right:
- Next slide thumbnail
- Facilitator directions for current slide (under next slide thumbnail)

How to Access This View

- Click the slideshow icon in the Display Settings on the right side of the bottom bar

- OR, click Slide Show on the top menu bar and select From the Beginning or From Current Slide
- Click View on the top menu bar
- Select Notes Page (not Notes Master)

Note: This same view appears in your PDF Facilitator Guide for printing and mark-up prior to the workshop.

- Click Slide Show on the top menu bar
- Click to select Use Presenter View checkbox if you would like it to show on a different screen while the audience views your projecting/shared screen

Note: Hidden slides (eg, Workshop At-A-Glance on the previous page) will not show in Presenter View, so make sure to print those pages prior to facilitating. To determine hidden slides, click View on the top menu bar and select Normal. Hidden slides are dimmed in color and the slide number is crossed off.

sonofi

Review and Q\&A Checkpoints:
Checkpoint 1

- Overview of Hemophilia A and B Module
- Management of Hemophilia A and B Module

Facilitator Notes

Key Concepts

Notice

- You are only permitted to use approved materials in your communication with customers. If you have any questions about materials or messaging, please speak with your manager.
- All off-label inquiries must be referred to your local MSL or to Medical Information.
sanofi
Confidentalal. For itemal use only. The intormation contained inths sraining is tor ritemal, educational purposes only. Do not

Facilitator Notes
sanofi

Overview of Checkpoints

Efanesoctocog alpha Annotated PI

Efanesoctocog alpha Clinical Compendium

Facilitator Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Checkpoint 1

Key Concepts

- Introduce the first module for review during Checkpoint 1, Overview of Hemophilia A and B.

Facilitator Notes

Introduction to Hemophilia

- Describe hemophilia
- What causes hemophilia?
- Define FVIII and FIX
- What are causes of coagulation factor deficiency?

Facilitator Notes

- This is a build slide. Advancing the slide will allow additional content to appear on-screen.
- As you discuss on-screen content, ensure participants understand the key concepts at right.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
sanofi

Facilitator Notes

- This is a build slide. Advancing the slide will allow additional content to appear on-screen.
- As you discuss on-screen content, ensure participants understand the key concepts at right.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
sanofi

Complications of Bleeding in Hemophilia

Joint Hemorrhage

- Define target joint.
- Describe what recurrent joint bleeds can ultimately lead to using the image below.

Muscle Hemorrhage
Using the image below, compare a healthy calf muscle and a calf muscle hemorrhage in a patient with hemophilia, including symptoms and the need for early identification and management.

sanofi

Facilitator Notes

- This is a build slide. Advancing the slide will allow additional content to appear on-screen.
- As you discuss on-screen content, ensure participants understand the key concepts at right.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Key Concepts

Burden of Hemophilia
Quality of Life
Summarize the data shown in the graph below.

sonofi

Facilitator Notes

Facilitator Notes

Key Concepts

1. Platelet adhesion

- The damaged endothelium exposes collagen and vWF below its surface.
- Inflammatory mediators cause platelets to attach to the exposed (subendothelial) vWF and collagen.

2. Platelet activation

- Thrombin activates vWF-bound platelets to secrete mediators for platelet aggregation.
- Platelets change in shape to a pseudopodal, or spiky, form that increases their surface area and promotes aggregation.

3. Platelet aggregation

- Activated, vWF-bound platelets adhere to fibrinogen in the blood. Fibrinogen is a plasma protein that is later converted to fibrin by the action of thrombin.
- The fibrinogen interconnects the platelets to form a weak plug.

Pathophysiology of Hemophilia

Secondary Hemostasis

The coagulation cascade below is missing some key explainents. Name the missing components and

Disruption of Secondary Hemostasis How is the coagulation cascade disrupted in patients with hemophilia?

Key Concepts

Secondary Hemostasis:

- The coagulation cascade:
- Secondary hemostasis involves the activation of coagulation factors in a cascade to ultimately stabilize the weak platelet plug (formed in primary hemostasis) with fibrin mesh. It involves intrinsic and extrinsic pathways, which begin separately but meet to form the common pathway. The goal of the common pathway is to activate fibrinogen into fibrin, which forms strands that bind platelets together, thereby stabilizing the platelet plug. FVIII and FIX are both part of the intrinsic pathway.
- When thrombin, a key player in coagulation, is generated in the common pathway, it cleaves fibrinogen to fibrin and also reinforces the cascade by activating certain factors, including FV, FVIII, and FXIII. It also plays a role in platelet activation in primary hemostasis.
- Arrows represent the activation of a clotting factor by the factor(s) directly above, below, or to the side of it. The "a" in a factor name indicates the activated form. The factors deficient in hemophilia A and B, FVIII and FIX, respectively, are highlighted, as is the goal of the cascade, fibrin.

Disruption of Secondary Hemostasis

- The enzyme FIXa activates FX in the presence of cofactor FVIIIa.
- In patients with hemophilia, the absent or dysfunctional FVIII or FIX results in insufficient generation of FXa, with consequent insufficient generation of thrombin and fibrin.
- Ultimately, without the necessary fibrin, blood clots do not form properly in response to tissue injury.

Facilitator Notes

- This is a build slide. Advancing the slide will allow additional content to appear on-screen.
- As you discuss on-screen content, ensure participants understand the key concepts at right.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
sanofi

Diagnosis of Hemophilia

- In your own words, describe the stepped approach to diagnosis. Provide details around the bold, purple text.

- What is the diagnostic threshold for hemophilia?

Facilitator Notes

- This is a build slide. Advancing the slide will allow additional content to appear on-screen.
- As you discuss on-screen content, ensure participants understand the key concepts at right.
\qquad
\qquad
\qquad
\qquad
sonofi

Differential Diagnosis

Von Willebrand Disease

- Describe von Willebrand Disease (VWD)
- Using the chart below, explain vWF deficiency and description for each subtype of VWD below.

- How is type 2 ND VWD (Normandy type) like hemophilia A?
sanofi \qquad

Facilitator Notes

- This is a build slide. Advancing the slide will allow additional content to appear on-screen.
- As you discuss on-screen content, ensure participants understand the key concepts at right.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
sanofi

Checkpoint 1

Key Concepts

- Introduce the second module for review during Checkpoint 1, Management of Hemophilia A and B.

Facilitator Notes

Treatment Goals for Patients With Hemophilia

- Describe the optimal care for patients with hemophilia
- What are the priorities in hemophilia treatment?
sanofi

Facilitator Notes

- This is a build slide. Advancing the slide will allow additional content to appear on-screen.
- As you discuss on-screen content, ensure participants understand the key concepts at right.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
sanofi

Clotting Factor Concentrates

- What are clotting factor concentrates (CFCs)?
- Describe how individual plasma-derived products differ.
- What formulations for recombinant products are available? Describe each.

Facilitator Notes

- This is a build slide. Advancing the slide will allow additional content to appear on-screen.
- As you discuss on-screen content, ensure participants understand the key concepts at right.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
sanofi
Recombinant products: Made using genetically engineered cells and recombinant technology
- Recombinant CFCs (denoted rFVIII or rFIX) are classified according to the manufacturing process used and their biologic half-life.
- Manufacturing process classification: first-generation products, second-generation products, and third-generation products
- Half-life classification:
- Standard half-life (SHL) products
- FVIII: ~12 hours
- FIX: ~18-24 hours
- Extended half-life (EHL) products
- FVIII: 1.4-fold to 1.6 -fold increase in half-life compared with SHL products
- FIX: 3-fold to >5-fold increase in half-life compared with SHL products

Emicizumab, an FVIII Mimetic

Describe the following for emicizumab:

- Use/indication
- Mechanism of action
- Dosage/administration
- Comments
- Guideline recommendations for place in therapy
sanofi

Facilitator Notes

\qquad
\square
\qquad
\qquad
\qquad

Key Concepts

Use/indication:

- For routine prophylaxis to prevent or reduce the frequency of bleeding episodes in adults and children with hemophilia A with or without inhibitors.

Mechanism of action:

- Emicizumab is a bispecific antibody; it has 2 separate antigen-binding sites that are each specific for a given target: activated FIX (FIXa) and FX. It mimics the action of FVIII by bridging FIXa and FX, thus restoring the function of missing FVIII needed for hemostasis.

Dosage/administration:

- Subcutaneous (SC) loading dose: $3 \mathrm{mg} / \mathrm{kg}$ once weekly for 4 weeks, followed by a subcutaneous maintenance regimen (one of the following options): $1.5 \mathrm{mg} / \mathrm{kg}$ once weekly, 3 $\mathrm{mg} / \mathrm{kg}$ once every 2 weeks, or $6 \mathrm{mg} / \mathrm{kg}$ once every 4 weeks. Prophylactic use of bypassing agents (to be discussed later) should be discontinued before starting emicizumab.

Comments:

- Combination use with activated prothrombin complex concentrates (aPCC) may lead to thrombosis.
- Because emicizumab acts as a substitute for FVIII, it is only for use in patients with hemophilia A.
- Benefits of emicizumab are its SC route of administration and long half-life, which allows for infrequent administration.
- It is only indicated for prevention of bleeds, not treatment of bleeding episodes. When used for routine prophylaxis, the long-term impact on joint health is not known.

Guideline recommendations for place in therapy:

- Emicizumab is the only non-factor-replacement therapy available and is a useful option for bleeding prophylaxis in patients with hemophilia A.
- It is used only for prevention, not treatment, of bleeds.
- Breakthrough bleeding while on emicizumab must be treated with FVIII or bypassing agents (discussed later).

Other Hemostatic Agents

Desmopressin to Increase FVIII Levels in Hemophilia A
Describe the following for desmopressin (DDAVP):

- Use/indication
- Mechanism of action
- Dosage/administration
- Comments

DDAVP, 1-deamino-8-D-arginine vasopressin
sanofi

Facilitator Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
sanofi

Facilitator Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Key Concepts

Use/indication:

- Tranexamic acid: To treat superficial soft tissue and mucosal bleeds (oral, nasal, gastrointestinal, or excessive menstrual bleeding) in patients with hemophilia A or B.
- Aminocaproic acid: Similar to tranexamic acid, but not widely used because of lower potency, shorter half-life, and greater toxicity.

Mechanism of action:

- Tranexamic acid and aminocaproic acid: Promotes clot stability by preventing fibrinolysis; works by inhibiting the activation of plasminogen to plasmin, which degrades fibrin.

Dosage/administration:

- Tranexamic acid:
- Oral tablet: $25 \mathrm{mg} / \mathrm{kg} /$ dose, 3-4 times daily
- IV infusion: $10 \mathrm{mg} / \mathrm{kg} /$ dose, 2-3 times daily
- May be used as an oral rinse
- Aminocaproic acid:
- Oral: $100 \mathrm{mg} / \mathrm{kg} /$ dose up to $2 \mathrm{~g} /$ dose
- IV: $100 \mathrm{mg} / \mathrm{kg} /$ dose up to $4 \mathrm{~g} /$ dose
- Doses may be given every 4-6 hours, up to $24 \mathrm{~g} /$ day

Comments:

- Tranexamic acid:
- May be used alone or as adjuvant therapy with standard doses of CFCs.
- Contraindicated in patients with hemophilia B receiving prothrombin complex concentrates (PCCs) because of increased risk for thromboembolism.
- Aminocaproic acid: Can be associated with myopathy, especially with administration of high doses for several weeks; myopathy resolves after stopping treatment.

Facilitator Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
sanofi

Pharmacokinetics of CFC Use

- What is pharmacokinetics (PK)?
- Using the graph below, describe CFC PK evaluation.

sanofi

Facilitator Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Key Concepts

What is PK?

- Pharmacokinetics (PK) describes the fate of administered drugs in the body.
- More specifically, it describes the time course of an administered drug's concentration in plasma, and generally comprises drug absorption (into the circulation), distribution (between the circulation and body tissues), metabolism (breakdown), and elimination (clearance from the body).

Concentration-time curve

- In hemophilia, CFC PK evaluation is based on plasma CFC activity level (also referred to as concentration), which is measured either as a percentage of normal or as international units per deciliter (IU/dL).
- A factor level of 1% is equal to $1 \mathrm{IU} / \mathrm{dL}$ or $0.01 \mathrm{IU} / \mathrm{mL}$.
- After administration, CFC plasma levels can be measured serially and plotted as a function of time.
- This is called a concentration-time curve and gives a visual representation of a patient's PK handling of CFC. (An example of plasma sampling times would be predose and then post-dose at 30 minutes and 1, 3, 6, 12, 24, and 48 hours).
- For all CFCs, this curve follows the same general pattern: a rapid increase in measured plasma level, described as a "peak" of factor activity, and then a gradual decline of CFC from the blood, known as "clearance."
- The lowest plasma CFC concentration reached after an infusion and before the next dose is the "trough."

Pharmacokinetics of CFC Use

Define the following key parameters used in the monitoring of CFC use

- Peak ($\mathrm{C}_{\text {max }}$)
- Recovery
- Trough
- In vivo recovery (IVR)
- Time to trough
- Incremental recovery
- Mean residence tie (MRT)
- Half-life $\left(\mathrm{t}_{1 / 2}\right)$
- Area under the concentration-time curve (AUC)
-
- Volume of distribution at steady state $\left(\mathrm{V}_{\mathrm{ss}}\right)$

CFC, clotting factor concentrate
sanofi

Facilitator Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
sanofi

Pharmacokinetics of CFC Use

- Describe extravascular distribution of FIX using the image below.

- Why is the relationship between FVIII PK handling and bleeding outcomes not well established for those with hemophilia B ?
sanofi

Facilitator Notes

- This is a build slide. Advancing the slide will allow additional content to appear on-screen.
- As you discuss on-screen content, ensure participants understand the key concepts at right.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
sanofi

Prophylaxis with CFCs

"Achieve zero bleeds"

- Define prophylaxis and name its goals

CFC Prophylaxis Regimens

Patient-Tailored Prophylaxis

- Why are tailored prophylaxis regimens customized to the needs of individual patients?

CFC Prophylaxis

Considerations for Product and Regimen Selection
Variables that affect factor levels.

- What are the most important variables that affect factor levels?
- What are the least important variables that affect factor levels?
sanofi

Facilitator Notes

- This is a build slide. Advancing the slide will allow additional content to appear on-screen.
- As you discuss on-screen content, ensure participants understand the key concepts at right.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
sanofi

Inhibitors to CFCs

What are inhibitors to CFCS?
Why are they recognized as one of the most serious complications in hemophilia treatment?

- Describe how inhibitors are associated with anaphylactic reactions to FIX as well as the development of nephrotic syndrome in patients with hemophilia B.
- How are inhibitors identified and measured?
- What are the recommendations for patient screening?

Key Concepts

Definition, frequency, and complications:

- Inhibitors are antibodies that develop against exogenous FVIII or FIX (ie, after exposure to CFCs).
- The immune system in an affected patient identifies the CFC as foreign and develops antibodies against it.
- Inhibitors are a serious complication because they neutralize the activity of administered CFCs, rendering them ineffective.
- PK evaluations in affected patients show that inhibitors reduce both factor recovery and half-life.
- Thus, bleed control is much more difficult in patients with inhibitors.
- Inhibitors can occur in patients with either hemophilia A or B, but are more common in those with hemophilia A.
- Inhibitors are more common in patients with severe hemophilia compared with those with mild or moderate disease. (For hemophilia B, inhibitors occur almost exclusively in patients with severe disease.)

Anaphylaxis and nephrotic syndrome (hemophilia B)

- Anaphylaxis and nephrotic syndrome can occur in conjunction with inhibitor development in patients with hemophilia B.
- In one registry of 94 patients with hemophilia B and inhibitors, 56 patients (60%) had anaphylaxis after exposure to FIX (anaphylaxis was defined as an allergic reaction with respiratory or cardiovascular compromise).
- Of the patients undergoing immune tolerance induction (ITI) therapy (a treatment for inhibitors), one-third developed nephrotic syndrome, almost all of whom had a history of anaphylaxis to FIX. (ITI to be reviewed in more detail in an upcoming slide.)

Identity and measurement:

- Inhibitors are identified and measured by the Nijmegen-modified Bethesda assay, which reports results in Bethesda units (BU). The greater the number of BU , the more inhibitors are present.
- Assay value thresholds differentiate high-titer from low-titer inhibitors as follows:
- High-titer inhibitor: $\geq 5 \mathrm{BU}$
- Low-titer inhibitor: <5 BU

Recommendations for patient screening:

- An exposure (previously known as "exposure day") is a 24 -hour period in which a CFC product is given.
- In general, inhibitor development is most common during the first 20 exposures, and nearly all occur within 75 exposures.
- Routine screening is recommended during this period of initial exposure and is responsible for identifying half of inhibitor cases.
- Other cases are usually identified when patients fail to respond to adequate CFC treatment.

Facilitator Notes

- This is a build slide. Advancing the slide will allow additional content to appear on-screen.
- As you discuss on-screen content, ensure participants understand the key concepts at right.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
sanofi

Inhibitors to CFCs

Immune Tolerance Induction (ITI)

- What does ITI involve?
- When is ITI considered successful? When is it considered a failure?
- What are the common practices for ITI in patients with hemophilia A?
- Describe best practices for the use of ITI in patients with hemophilia B.

Facilitator Notes

- This is a build slide. Advancing the slide will allow additional content to appear on-screen.
- As you discuss on-screen content, ensure participants understand the key concepts at right.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
sanofi

Inhibitors to the Body's Natural Clotting Factors
Management of Acquired Hemophilia

- What is acquired hemophilia caused by?
- Describe in more detail the following therapeutic goals for acquired hemophilia:
- Hemostatic therapy for the control and prevention of bleeding
- Immunosuppressive therapy for eradication of the inhibitor
sanofi

Facilitator Notes

- This is a build slide. Advancing the slide will allow additional content to appear on-screen.
- As you discuss on-screen content, ensure participants understand the key concepts at right.

Key Concepts

Causation:

- Unlike congenital hemophilia (the classic form of hemophilia), acquired hemophilia is caused by the development of autoantibodies (also called inhibitors) against endogenous clotting factors (usually FVIII).

Hemostatic therapy:

- rFVIIa or recombinant porcine factor VIII (rpFVIII) are recommended for treatment of clinically relevant bleeding regardless of FVIII activity or inhibitor titers.

Immunosuppressive therapy:

- Immunosuppressive treatment is recommended in all patients with acquired hemophilia and is successful in eliminating the inhibitor in 60% to 80% of patients.

Key Concepts

Musculoskeletal Complications in Hemophilia

Overvie

- Joint bleeds account for what percentage of acute bleeding in patients with hemophilia?
- What about muscle bleeds?
- What are the goals of treatment for patients who develop arthropathy?
- Describe the evaluation and monitoring of hemophilic arthropathy.
- Describe the evaluation and monitoring of muscle bleeds.

Imaging

- Describe the following imaging recommendations for hemophilic arthropathy
- Magnetic resonance imaging (MRI)
- Ultrasound
- Conventional plan radiographs (aka, x-rays)
- Describe the following imaging recommendations for muscle bleeds:
- MRI
- Ultrasound

Facilitator Notes

- This is a build slide. Advancing the slide will allow additional content to appear on-screen.
- As you discuss on-screen content, ensure participants understand the key concepts at right.
\qquad
\qquad
\qquad
\qquad

Imaging recommendations for muscle bleeds:

- Ultrasound
- Can quickly and easily assess muscle bleeds and differentiate muscle bleeds from other regional causes of pain
- Echogenicity varies with timing of the bleed
- Ultrasound may be negative in the first 24 hours of a muscle bleed, so repeat ultrasound or MRI may be necessary
MRI:
- Can also be used for imaging of muscle bleeds
- Like ultrasound, MRI images vary with timing of the bleed, based on signal differences of various hemoglobin breakdown products

Key Concepts

- Address outstanding questions/concerns.
- Thank participants for attending Checkpoint 1.
- Conclude the session.

Facilitator Notes
sanofi

